

Mantra to get the best outcome......

IIT-JEE/ NEET/ KVPY/ OLYMPIAD

SECTION - (A)

1. $\frac{1}{\sqrt{9}-\sqrt{8}}$ is equal to
(a) $\frac{1}{2}(3-2 \sqrt{2})$
(b) $\frac{1}{3+2 \sqrt{2}}$
(c) $3-2 \sqrt{2}$
(d) $3+2 \sqrt{2}$
2. The area of an isosceles triangle having base 2 cm and length of one of the equal sides 4 cm , is
(a) $\sqrt{15} \mathrm{~cm}^{2}$
(b) $\sqrt{\frac{15}{2}} \mathrm{~cm}^{2}$
(c) $2 \sqrt{15} \mathrm{~cm}^{2}$
(d)none of these
3. In figure, if $A B||C D|| E F, P Q| | R S, \angle R Q D=25^{\circ}$ and $\angle C Q P=60^{\circ}$, then $\angle \mathrm{QRS}=$

(a) 85°
(b) 135°
(c) 145°
(d) 110°
4. The angles which differ by 38° and are complementary to each other, are
(a) $38^{\circ}, 52^{\circ}$
(b) $71^{\circ}, 109^{\circ}$
(c) $26^{\circ}, 154^{\circ}$
(d) $64^{\circ}, 26^{\circ}$
[1]

SECTION - (B)

5. If $\sqrt{2}=1.4142$, then find the value of $\sqrt{\frac{\sqrt{2}+1}{\sqrt{2}-1}}$.
6. If $\frac{x}{y}+\frac{y}{x}=-1(x y \neq 0)$, then find the value of $x^{3}-y^{3}$.
7. In figure, $\mathrm{AB} \| \mathrm{CD}, \angle \mathrm{BPR}=75^{\circ}$ and $\angle \mathrm{PQC}=125^{\circ}$, find x and y .

SECTION - (C)

8. Find five rational numbers $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$ between $\frac{2}{7}$ and $\frac{13}{35}$ so that

$$
\begin{equation*}
p_{1}-\frac{2}{7}=p_{2}-p_{1}=p_{3}-p_{2}=p_{4}-p_{3}=p_{5}-p_{4}=\frac{13}{35}-p_{5} \tag{3}
\end{equation*}
$$

9. Factorise: $x^{3}-23 x^{2}+142 x-120$.
10. If $x-\frac{1}{x}=6$, evaluate $x^{4}+\frac{1}{x^{4}}$.
11. If x and y be two positive real numbers such that $9 x^{2}+y^{2}=96$ and $x y=8$, then find the value of $3 x+y$.
12. A park, in the shape of a quadrilateral $A B C D$ has $\angle C=90^{\circ}, A B=10 \mathrm{~m}$, $B C=8 \mathrm{~m}, \mathrm{CD}=6 \mathrm{~m}$ and $\mathrm{AD}=6 \mathrm{~m}$. Prove that the area of the quadrilateral is equal to $3\{8+\sqrt{91}\} \mathrm{m}^{2}$.
13. In figure, ray $O P$ is perpendicular to the line $A B$ at O. Another ray $O Q$ is lying in between OA and OP . Prove that $\angle \mathrm{POQ}=\frac{1}{2}\{\angle \mathrm{BOQ}-\angle \mathrm{AOQ}\}$

14. If $2^{x}=3^{y}=6^{z}$, show that $\frac{1}{z}=\frac{1}{x}+\frac{1}{y}$.
15. A rhombus has perimeter 120 m and one of its diagonal is 50 m . Find the area of the rhombus.
16. In figure, if $A B \| C D, \angle A Q P=140^{\circ}$ and $\angle P R D=35^{\circ}$, find $\angle Q P R$ and reflex $\angle Q P R$.

17. In figure, $A B|\mid C D$, find angel x.

SECTION - (D)

18. In figure, $A D \perp A B, A D| | B C, \angle D C E=65^{\circ}$ and $\angle B D C=32^{\circ}$, find the angles x and y .

19. In figure, the sides $A B$ and $A C$ and $\triangle A B C$ are produced respectively to points P and Q . If bisectors BO and CO of $\angle \mathrm{CBP}$ and $\angle \mathrm{BCQ}$ respectively, meet at point O, Prove that
(i) $\angle \mathrm{BOC}=\frac{1}{2}(\mathrm{y}+\mathrm{z})$
(ii) $\angle \mathrm{BOC}=90^{\circ}-\frac{1}{2} \mathrm{x}$

20. Prove that $\left(\frac{1}{x^{a-b}}\right)^{\frac{1}{a-c}} \cdot\left(\frac{1}{x^{b-c}}\right)^{\frac{1}{b-a}} \cdot\left(\frac{1}{x^{c-a}}\right)^{\frac{1}{c-b}}=1$
21. Prove that the area of the quadrilateral $A B C D$ is $4\{\sqrt{3}+2 \sqrt{2}\} \mathrm{m}^{2}$ if $A B=6$, $B C=6 \mathrm{~m}, \mathrm{CD}=4 \mathrm{~m}, \mathrm{AD}=4 \mathrm{~m}$ and diagonal $\mathrm{AC}=4 \mathrm{~m}$.
22. If $a+8 \sqrt{5} b=\frac{8+\sqrt{5}}{8-\sqrt{5}}-\frac{8-\sqrt{5}}{8+\sqrt{5}}$, determine the rational numbers a and b. [4]
23. $A B C D$ is a trapezium is which $A B \| C D$; $B C$ and $A D$ are non-parallel sides. It is given that $A B=75 \mathrm{~cm}, B C=42 \mathrm{~cm}, C D=30 \mathrm{~cm}$ and $A D=39 \mathrm{~cm}$. Find the area of the trapezium.
24. If x and y be two positive real numbers such that $8 x^{3}+27 y^{3}=730$ and $2 x^{2} y$ $+3 x y^{2}=15$, evaluate $2 x+3 y$.
25. If $x^{1 / 3}+\frac{1}{x^{1 / 3}}=5$, find the value of $x^{3}+\frac{1}{x^{3}}$.
26. If $x^{4}+\frac{1}{x^{4}}=322$, prove that $x-\frac{1}{x}=4$ or $-4 ; x$ being a real number.
27. in figure, $D E \| S R, A P$ and $B P$ are bisectors of $\angle E A B$ and $\angle R B A$ respectively. Prove that $\angle A P B=90^{\circ}$. Further, if $A Q$ and $B Q$ are bisectors of $\angle \mathrm{DAB}$ and $\angle \mathrm{SBA}$ respectively, prove that AQBP is a rectangle.

