

Mantra to get the best outcome......

IIT-JEE/ NEET/ KVPY/ OLYMPIAD

SECTION - (A)

1. The number obtained on rationalizing the denominator of $\frac{1}{\sqrt{7}-2}$ is
[1]
(a) $\frac{\sqrt{7}+2}{45}$
(b) $\frac{\sqrt{7}-2}{3}$
(c) $\frac{\sqrt{7}+2}{5}$
(d) $\frac{\sqrt{7}+2}{3}$
2. The sides of a triangle are $56 \mathrm{~cm}, 60 \mathrm{~cm}$ and 52 cm long. Then the area of the triangle is
(a) $1322 \mathrm{~cm}^{2}$
(b) $1311 \mathrm{~cm}^{2}$
(c) $1344 \mathrm{~cm}^{2}$
(d) $1392 \mathrm{~cm}^{2}$
3. If $x^{51}+51$ is divided by $x+1$, the remainder is
(a) 1
(b) 50
(c) 49
(d) -50
4. In figure, if $\mathrm{OP}\left|\mid \mathrm{RS}, \angle \mathrm{OPQ}=110^{\circ}\right.$ and $\angle \mathrm{QRS}=130^{\circ}$, then $\angle \mathrm{PQR}$ is equal to

(a) 40°
(b) 50°
(c) 60°
(d) 70°

SECTION - (B)

5. If area of an equilateral triangle is $9 \sqrt{3} \mathrm{~cm}^{2}$, find the length of each side of the triangle.
6. If x be a positive real number such that $\mathrm{x}^{2}+\frac{1}{\mathrm{x}^{2}}=\frac{50}{7}$, then evaluate $\mathrm{x}+\frac{1}{\mathrm{x}}$.
7. In figure, ray AP stands on the line I. If $\angle \mathrm{BAP}=75^{\circ}$ and $\angle \mathrm{CAQ}=25^{\circ}$, find reflex $\angle \mathrm{PAQ}$.

SECTION - (C)

8. Simplify: $\left\{\frac{2 \sqrt{10}+3 \sqrt{10}}{5 \sqrt{2}}\right\}^{4}$
[3]
9. Taking $\sqrt{3}=1.732$ and $\sqrt{5}=2.236$, evaluate $\frac{1}{4 \sqrt{3}-3 \sqrt{5}}$ upto three decimal places.
10. If $2^{x}=3^{y}=6^{z}$, show that $\frac{1}{z}=\frac{1}{x}+\frac{1}{y}$.
11. Factorise: $x^{3}-23 x^{2}+142 x-120$
12. If a, b, c are non-zero real numbers such that $a^{2}+b^{2}+c^{2}=a b+b c+c a$, then show that $a^{3}+b^{3}+c^{3}=3 a b c$.
13. In figure, ray $O P$ is perpendicular to the line $A B$ at O. Another ray $O Q$ is lying in between OA and OP.

Prove that $\angle \mathrm{POQ}=\frac{1}{2}\{\angle \mathrm{BOQ}-\angle \mathrm{AOQ}\}$

14. In figure if $\angle 1+\angle 2=\angle 3+\angle 4$, prove that AOB is a straight line.

15. In figure, $\mathrm{AB} \| C D, \angle \mathrm{PQR}=55^{\circ}$ and $\angle \mathrm{PRD}=100^{\circ}$, find the angles x, y and
z.

16. A rhombus has perimeter 120 m and one of its diagonal is 50 m . Find the area of the rhombus.
17. The perimeter of a triangle is 120 m and its sides are in the ratio $5: 12: 13$. Find the length of the altitude of the triangle corresponding to the longest side.

SECTION - (D)

18. Prove that $\frac{1}{1+x^{a-b}}+\frac{1}{1+x^{b-a}}=1$.
19. If $a+8 \sqrt{5} b=\frac{8+\sqrt{5}}{8-\sqrt{5}}-\frac{8-\sqrt{5}}{8+\sqrt{5}}$, determine the rational numbers a and b. [4]
20. Simplify: $\frac{\left(\frac{81}{16}\right)^{\frac{-3}{4}} \times\left(\frac{25}{9}\right)^{\frac{-3}{2}} \times\left(\frac{2}{5}\right)^{-3}}{(125)^{\frac{2}{3}} \times(8)^{\frac{4}{3}}}$
21. Express $0.6+0 . \overline{6}+0.4 \overline{6}$ in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.
22. Without finding the cubes, factorise: $(x-2 y)^{3}+(2 y-3 z)^{3}+(3 z-x)^{3}$.
23. A floral design on a floor is made up of 12 tiles which are triangular, the sides of the triangular tiles are $24 \mathrm{~cm}, 32 \mathrm{~cm}$ and 40 cm as shown in figure. The tiles are polished at the rate of Rs. 1.20 per $10 \mathrm{~cm}^{2}$. Find the cost of polishing the tiles.

24. If $x+\frac{1}{x}=5$, evaluate $x^{6}+\frac{1}{x^{6}}$.
25. Two triangular walls of a flyover has been used for advertisements from both sides. The sides of each wall are $100 \mathrm{~m}, 80 \mathrm{~m}$ and 40 m . The advertisements yield an earning of Rs. 120 per m^{2} per year. Find the amount of revenue earned in one year. (Take $\sqrt{231}=15.2$)
26. in figure, $\mathrm{DE} \| \mathrm{SR}, \mathrm{AP}$ and BP are bisectors of $\angle \mathrm{EAB}$ and $\angle \mathrm{RBA}$ respectively. Prove that $\angle A P B=90^{\circ}$. Further, if $A Q$ and $B Q$ are bisectors of $\angle \mathrm{DAB}$ and $\angle \mathrm{SBA}$ respectively, prove that AQBP is a rectangle.

27. In figure, bisectors of angle $\angle A B C$ and $\angle A C B$ meet at P. Prove that

$$
\begin{equation*}
\angle \mathrm{PBC}+\angle \mathrm{PCB}=90^{\circ}-\frac{1}{2} \angle \mathrm{BAC} . \tag{4}
\end{equation*}
$$

