Motion in One D

Mantra to get the best outcome......

1. Multiple choice type question:
(i) The vector quantity is:
(a) work
(b) pressure
(c) distance
(d) velocity
(ii) The S.I. unit of velocity is:
$\begin{array}{ll}\text { (a) } \mathrm{km} \mathrm{h}^{-1} & \text { (b) } \mathrm{m} \mathrm{min}^{-1}\end{array}$
(c) $\mathrm{km} \mathrm{min}^{-1}$
(d) $\mathrm{m} \mathrm{s}^{-1}$
(iii) The unit of retardation is:
(a) $\mathrm{m} \mathrm{s}^{-1}$
(b) $\mathrm{m} \mathrm{s}^{-2}$
(c) m
(d) $\mathrm{m} \mathrm{s}^{2}$
(iv) A body when projected up with an initial velocity u goes to a height h in time t and then comes back at the point of projection. The correct statement is:
(a) the average velocity is $2 \mathrm{~h} / \mathrm{t}$
(b) the acceleration is zero
(c) the final velocity on reaching the point of projection is 2 u
(d) the displacement is zero
(v) $18 \mathrm{~km} \mathrm{~h}^{-1}$ is equal to:
(a) $10 \mathrm{~m} \mathrm{~s}^{-1}$
(b) $5 \mathrm{~m} \mathrm{~s}^{-1}$
(c) $18 \mathrm{~m} \mathrm{~s}^{-1}$
(d) $1.8 \mathrm{~m} \mathrm{~s}^{-1}$
(vi) The correct equation of motion is:
(a) $v=u+a S$
(b) $v=u t+a$
(c) $\mathrm{S}=\mathrm{ut}+\frac{1}{2}$ at(d) $\mathrm{v}=\mathrm{u}+\mathrm{at}$
(vii) A car starting from rest accelerates uniformly to acquire a speed $20 \mathrm{~km} \mathrm{~h}^{-1}$ in 30 min . The distance travelled by car in this time interval will be:
(a) 600 km
(b) 5 km
(c) 6 km
(d) 10 km
(viii) The velocity-time graph of a body in motion is a straight line inclined to the time axis. The correct statement is:
(a) velocity is uniform
(b) acceleration is uniform
(c) both velocity and acceleration are uniform
(d) neither velocity nor acceleration is uniform
(ix) For uniform motion:
(a) the distance -time graph is a straight line parallel to the time axis.
(b) the speed-time graph is a straight line inclined to the time axis.
(c) the speed-time graph is a straight line parallel to the time axis.
(d) the acceleration-time graph is a straight line parallel to the time axis.
(x) For a uniformly retarded motion, the velocity-time graph is:
(a) a curve
(b) a straight line parallel to the time axis
(c) a straight line perpendicular to the time axis.
(d) a straight line inclined to the time axis.
2. Define a scalar and a vector quantity. Give two examples of each.
3. Define distance and displacement. Mention their SI units.
4. Which physical quantity is obtained from the slope of (i) distance - t graph and (ii) v - t graph? If these graphs are straight lines parallel to x-axis, what do you infer in each case?
5. Differentiate between uniform acceleration and variable acceleration.
6. What do you mean by the terms:
[2×4=8]
(i) uniform speed
(ii) variable speed
(iii) average speed and
(iv) instantaneous speed?
7. Define the following terms:
[$2 \times 5=10]$
(i) velocity
(ii) uniform velocity
(iii) variable velocity
(iv) average velocity and
(v) instantaneous velocity
8. Calculate the acceleration of the car starting from rest which attains a velocity of $30 \mathrm{~m} / \mathrm{s}$ in 0.05 h .
9. A train passed the $100 \mathrm{~km}, 160 \mathrm{~km}$ and 220 km marks at 8:30 am, 9:30 am and 11:30 am. Find the average speed of the bus during:
(i) $8: 30 \mathrm{am}$ to $9: 30 \mathrm{am}$
(ii) 9:30 am to 11:30, and
(iii) $8: 30 \mathrm{am}$ to $11: 30 \mathrm{am}$.
10. In a picture tube electrons travel (at a constant speed) 20 cm in $10^{-5} \mathrm{~s}$. What is their average speed?
[3]
11. A body is dropped from the top of a tower. It acquires a velocity $20 \mathrm{~ms}^{-1}$ on reaching the ground. Calculate the height of the tower. (Take $g=10 \mathrm{~m} \mathrm{~s}^{-2}$)
12. A bullet initially moving with a velocity $20 \mathrm{~ms}^{-1}$ strikes a target and comes to rest after penetrating a distance 10 cm in the target. Calculate the retardation caused by the target.
13. What do you mean by motion in one direction?
14. Can displacement be zero even if distance is not zero? Give one example to explain your answer.
[3]
15. Give an example of motion in which average speed is not zero, but the average velocity is zero.
16. What is meant by the term retardation? Name its S.I. unit.
[3]
17. Draw a displacement-time graph for a boy going to school with a uniform velocity.
18. Define the term acceleration due to gravity. State its average value.
[3] "The value of ' g ' remains same at all places on the earth surface". Is this statement true? Give reason for your answer.
19. Derive following equation for a uniformly accelerated motion:
(i) $v=u+a t$
(ii) $\mathrm{S}=\mathrm{ut}+\frac{1}{2} a \mathrm{t}^{2}$
(iii) $v^{2}=u^{2}+2 a S$
where the symbols have their usual meanings.
20. The diagram (fig.) below shows the pattern of the oil dripping on the road, at a constant rate from a moving car. What information's do you get from it about the motion of car?

21. A train is moving with a velocity of $90 \mathrm{~km} \mathrm{~h}^{-1}$. It is brought to stop by applying the brakes which produce a retardation of $0.5 \mathrm{~m} \mathrm{~s}^{-2}$. Find (i) the velocity after 10 s , and (ii) the time taken by the train to come to rest.
