

MOTION IN ONE D

Mantra to get the best outcome.....

IIT-JEE + NEET + KVPY + OLYMPIAD + NTSE

Clas	s 9 th 1	CSE
MA	RKS	: 80 PHYSICS TIME : 3 HR.
1.	Mu	tiple choice type question: [1×10=10]
	(i)	The vector quantity is:
	(a)	work (b) pressure (c) distance (d) velocity
	(ii)	The S.I. unit of velocity is:
	(a)	km h ⁻¹ (b) m min ⁻¹ (c) km min ⁻¹ (d) m s ⁻¹
	(111)	The unit of retardation is : (1)
	(a)	$m S^{r_1}$ (b) $m S^{r_2}$ (c) m (d) $m S^2$
	(IV)	A body when projected up with an initial velocity u goes to a height h in time
	(-)	t and then comes back at the point of projection. The correct statement is:
	(a)	the average velocity is 2n/t (b) the acceleration is zero
	(d)	the displacement is zero
	(u)	18 km h^{-1} is equal to:
	(v) (a)	$10 \text{ m s}^{-1} (h) 5 \text{ m s}^{-1} (c) 18 \text{ m s}^{-1} (d) 1.8 \text{ m s}^{-1}$
	(a) (vi)	The correct equation of motion is:
	(VI)	1
	(a)	$v = u + aS$ (b) $v = ut + a$ (c) $S = ut + \frac{1}{2} at(d) v = u + at$
	(vii)	A car starting from rest accelerates uniformly to acquire a speed 20 km h ⁻¹ in
		30 min. The distance travelled by car in this time interval will be:
	(a)	600 km (b) 5 km (c) 6 km (d) 10 km
	(viii	The velocity-time graph of a body in motion is a straight line inclined to the
	<i>/</i>	time axis. The correct statement is:
	(a)	velocity is uniform (b) acceleration is uniform
	(C)	both velocity and acceleration are uniform
	(a)	For uniform motion
	(IX) (a)	FOI UNITOTIN MOTION.
	(a) (h)	the speed-time graph is a straight line inclined to the time axis.
	(D)	the speed-time graph is a straight line narallel to the time axis.
	(d)	the acceleration-time graph is a straight line parallel to the time axis
	(a) (x)	For a uniformly retarded motion, the velocity-time graph is:
	(a)	a curve (b) a straight line parallel to the time axis
	(c)	a straight line perpendicular to the time axis.
	(d)	a straight line inclined to the time axis.
	. ,	-

Class 9th ICSE Define a scalar and a vector quantity. Give two examples of each. 2. [2] Define distance and displacement. Mention their SI units. [2] 3. Which physical quantity is obtained from the slope of (i) distance - t graph and 4. (ii) v - t graph? If these graphs are straight lines parallel to x-axis, what do you infer in each case? [2] 5. Differentiate between uniform acceleration and variable acceleration. [2] What do you mean by the terms: [2×4=8] 6. (i) uniform speed (ii) variable speed (iii) average speed and (iv) instantaneous speed? 7. Define the following terms: [2×5=10] (i) velocity (ii) uniform velocity (iii) variable velocity (iv) average velocity and (v) instantaneous velocity 8. Calculate the acceleration of the car starting from rest which attains a velocity of 30 m/s in 0.05 h. [3] 9. A train passed the 100 km, 160 km and 220 km marks at 8:30 am, 9:30 am and 11:30 am. Find the average speed of the bus during: [3] (i) 8:30 am to 9:30 am (ii) 9:30 am to 11:30, and (iii) 8:30 am to 11:30 am. 10. In a picture tube electrons travel (at a constant speed) 20 cm in 10^{-5} s. What is their average speed? [3] 11. A body is dropped from the top of a tower. It acquires a velocity 20 ms⁻¹ on reaching the ground. Calculate the height of the tower. (Take $g = 10 \text{ m s}^{-2}$) [3]

- A bullet initially moving with a velocity 20 ms⁻¹ strikes a target and comes to rest after penetrating a distance 10 cm in the target. Calculate the retardation caused by the target. [3]
- 13. What do you mean by motion in one direction? [3]

Best solution 11/26, Opp. Malaw Manglik Bhawan, Vijay Nagar, Indore, 0731-4080896 3

Class 9th ICSE

- 14. Can displacement be zero even if distance is not zero? Give one example to explain your answer. [3]
- Give an example of motion in which average speed is not zero, but the average velocity is zero. [3]
- 16. What is meant by the term retardation? Name its S.I. unit. [3]
- Draw a displacement-time graph for a boy going to school with a uniform velocity. [3]
- Define the term acceleration due to gravity. State its average value. [3] "The value of 'g' remains same at all places on the earth surface". Is this statement true? Give reason for your answer.
- 19. Derive following equation for a uniformly accelerated motion: [3] (i) v = u + at (ii) $S = ut + \frac{1}{2} at^2$ (iii) $v^2 = u^2 + 2aS$

where the symbols have their usual meanings.

The diagram (fig.) below shows the pattern of the oil dripping on the road, at a constant rate from a moving car. What information's do you get from it about the motion of car?

21. A train is moving with a velocity of 90 km h^{-1} . It is brought to stop by applying the brakes which produce a retardation of 0.5 m s⁻². Find (i) the velocity after 10 s, and (ii) the time taken by the train to come to rest. [4]